THE USE OF MACHINE LEARNING IN SITUATIONAL MANAGEMENT IN RELATION TO THE TASKS OF THE POWER INDUSTRY

Lyudmila V. Massel, Olga M. Gerget, Alexey G. Massel, Timur G. Mamedov

Melentiev Energy Systems Institute of SB RAS, Tomsk Polytechnic University

The article discusses the application possibilities of machine learning methods (artificial neural networks (ANN) and genetic algorithms (GA) to form management actions when applying the concept of situational management for intelligent support of strategic decision-making on the development of energy. At the first stage, the application of ANN to classify extreme situations in the energy sector, to select the most effective management actions (preventive measures) in order to prevent a critical situation from developing into an emergency. Genetic algorithms are proposed to be used to determine the weighting coefficients for training ANN. An algorithm for constructing a classifier based on a neural network and a demonstration task using data on generation and consumption of the United Electric Power System of Siberia are presented.

situational management, machine learning, artificial neural networks, genetic algorithms, extreme situations in the energy sector, management actions (preventive measures).

Back